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Abstract. A causally well-behaved solution of the localization problem for the free electron is
given, with natural space-time transformation properties, in terms of Dirac’s position operatorx.
It is shown that, althoughx is not an observable in the usual sense, and has no positive-energy
(generalized) eigenstates, the four-vector density(ρ(x, t), j(x, t)/c) is observable, and can be
localized arbitrarily precisely about any point in space, at any instant of time, using only positive-
energy states. A suitable spin operator can be diagonalized at the same time.

1. Introduction

The problem of localization in the relativistic quantum mechanics of a particle with nonzero
rest-massm—whether arbitrarily precise localization is possible, and if so, how it should be
described—is almost as old as relativistic quantum mechanics itself [1–6]. Despite the efforts
of many researchers over the intervening years [7–12], the problem continues to attract much
discussion [13], indicating that there is no general acceptance of any of the resolutions proposed
to date.

A view sometimes expressed is that all the difficulties associated with the problem arise
because any attempt to localize a particle on a scale small compared with its Compton
wavelengthλC = h̄/mc, involves an uncertainty in energy so large that pair-production
becomes possible, and a one-particle description of the physics becomes inconsistent. As
was pointed out by Newton and Wigner [6] in their well known paper on the problem, this
view ‘really denies the possibility of the measurement of the position’ of a particle. Some
authors have considered it appropriate to abandon any attempt at one-particle localization, and
to focus instead on local observables associated with quantized relativistic fields [12], but this
approach has evidently failed to satisfy the many physicists who have continued to investigate
the problem at the one-particle level [8–11,13]. Because the theory of relativity is, at its heart,
a theory of relations between events in space-time, and because it is difficult to imagine what
can constitute an event other than the instantaneous localization of a particle, the denial of
one-particle localizability is hard to accept.

It is important to see that the argument regarding pair-production and the Compton
wavelength is inconclusive, because a single particle can have an arbitrarily large energy,
and hence an arbitrarily large uncertainty in its energy. Therefore, the fact that a sufficiently
small uncertainty in position implies an uncertainty in energy much greater thanmc2 does
not in itself imply a breakdown of the one-particle picture. Indeed, Landau and Peierls [3]

§ On leave from: Department of Mathematics, University of Queensland, Brisbane 4072, Australia.

0305-4470/99/346127+13$30.00 © 1999 IOP Publishing Ltd 6127



6128 A J Bracken and G F Melloy

argued a long time ago that the minimal uncertainty in position is better represented as ¯hc/Ē,
whereĒ is a characteristic energy associated with the measurement, so that arbitrarily precise
localization is not ruled out.

In what follows, we show that arbitrarily precise localization of a single free electron is
possible, when described in terms ofobservableattributes of Dirac’s position operatorx for
the electron, in particular the familiar probability density

ρ(x) = ψ†(x)ψ(x) (1)

and probability current density

j(x) = cψ†(x)αψ(x) (2)

associated with Dirac’s equation. Herex is the multiplicative operator acting on Dirac four-
spinor functionsψ(x), in the Hilbert spaceH with scalar product

(ψ1, ψ2) =
∫
ψ

†
1(x)ψ2(x) d3x. (3)

It seems the reason this simple solution has not been discovered long ago is that discussions
of the localization problem have been consistently side-tracked by the following two related
properties ofx, which appear to cause insurmountable difficulties:

(i) x does not leave invariant the subspaceH(+) ∈ H of positive-energy states, defined by

Hψ(x) = E(p)ψ(x) (4)

H = cα · p +mc2β. (5)

Herep = −ih̄∂/∂x, E(p) = c
√
p2 +m2c2, andα, β are the familiar 4× 4 Dirac matrices.

The square-root inE(p) is defined using the Fourier transform.
(ii) x has no positive-energy (generalized) eigenstates.
Because only positive-energy states are allowed to the electron, it has been common to

interpret (i) to mean thatx cannot represent an observable, and to interpret (ii) to mean that,
a fortiori, arbitrarily precise localization cannot be defined in terms ofx.

Our solution of the localization problem for the electron is based on the following two
new results, which we derive below:

(I) Despite (i), the probability densityρ(x) and associated current densityj(x) are
observable quantities whenψ is a positive-energy state, as are the ‘meanx-coordinates
of the electron’〈x〉 = (ψ,xψ), and the ‘uncertainty in the electron’sx-coordinates’,
1x = 〈(x− 〈x〉)2〉1/2.

(II) Despite (ii), sequences of positive-energy states of the electron can be constructed
for which the corresponding sequences of densities and current densities approach multiples
of δ3(x − a) for any chosen pointa in space, and for which the corresponding sequences of
mean values〈x〉 and uncertainties1x approacha and0, respectively.

Positive-energy states of the electron for which the observable probability density and
current density (and hence the electric charge density and current density) are arbitrarily sharply
localized, and for which the observable uncertainty in the particle’sx-coordinates is arbitrarily
small, surely describe arbitrarily precise localization of the electron. Accordingly, we conclude
that the electron can indeed be localized arbitrarily sharply about any chosen point, and that
localization is properly described in terms of observable properties of the Dirac operatorx and
its associated densities. Adding force to this conclusion are the facts that such a description
of localization is causally well-behaved and has natural space-time transformation properties,
as we show below.

Some comments on (I) and (II) are appropriate at this point. In regard to (I), we recall
that the desirability of the existence of a non-negative probability density, with an associated
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current density, was one of the main motivations for Dirac’s development of the equation which
bears his name [1]. However, because of (i), it is by no means obvious that the Dirac densities
are observable for positive-energy states of the electron. We present below a formal proof of
the observability of these quantities. It is remarkable that this question does not seem to have
been addressed in the past because, when multiplied by the electronic charge, (1) and (2) are
the charge and electric current density of the particle, and in that form have surely been subject
to much experimental scrutiny.

The nature and generality of the association of the observables of a physical system with
the self-adjoint operators on a Hilbert space, has been much discussed since the earliest days
of quantum mechanics [1, 14, 15]. In this connection, it is notable thatρ(x) andj(x) are
observable, for while it is true that there is a self-adjoint operatorx, acting in the space
H ⊃ H(+), in terms of which these densities are defined, this operator is not an observable in
the usual sense, because of (i), and it has no (generalized) eigenstates at all in the space of
physical states, because of (ii). In the case of the relativistic electron therefore, the relationship
between observables and associated self-adjoint operators is less direct than in nonrelativistic
quantum mechanics. In the next section, we suggest the name ‘indirect observable’ for the
operatorx, because it is not an observable in the usual sense, but it nevertheless has observable
attributes.

The result (II) is very surprising. Becausex has no positive-energy (generalized)
eigenstates, we might reasonably expect that1x cannot be made arbitrarily small if only
positive-energy states are considered. Indeed, bearing in mind the argument that is often
presented regarding pair-production, we might expect that1x ' λC in positive-energy states.
It seems that this has, at least implicitly, always been assumed true, but it is not so, and it is
this discovery which has enabled us to construct, for the first time, the localizing sequences
mentioned above.

The reader may yet feel that the nonexistence of an associated self-adjoint position
operator having generalized (positive-energy) eigenstates, constitutes a serious difficulty for
any localization scheme defined in terms ofx, a difficulty which does not exist in the
nonrelativistic case. However, we shall show that even in nonrelativistic quantum mechanics,
localization of a particle cannot be described adequately in terms of generalized eigenstates of
a position operator, but can be described in terms of localization of the probability density and
current. Therefore, the nonexistence of generalized eigenstates in the relativistic case does
not represent an insurmountable difficulty for the localization problem, as has commonly been
assumed.

The most important difference between the cases of the relativistic electron and the
nonrelativistic particle is not the nonexistence of a position operator with generalized
eigenstates in the relativistic case. Rather it is that in the nonrelativistic case, states can
be constructed for which the probability density has compact support. This is not possible for
the relativistic electron, as is well known [16]; all positive-energy wavefunctions, and hence
probability densities, have ‘tails’ extending to infinity in all directions ofx-space. These
tails typically decay like exp(−|x|/λC). It is an important consequence of our results that
the presence of these tails does not preclude the possibility of arbitrarily precise localization
using positive-energy states; in particular it does not preclude the possibility of constructing
positive-energy states for which1x is arbitrarily small, and for which the probability outside
any chosen compact region is arbitrarily small (cf figure 1). We think that the presence of these
tails should be accepted as an important and interesting feature ofall positive-energy states
of the electron, rather than a defect. Note that we are referring here to ‘tails’ in the space of
the Dirac coordinatex, not the tails in the Newton–Wigner coordinate and related concepts
of localization which have been discussed, in particular by Hegerfeldt [11]. The former tails
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propagate causally in time, the latter do not.
There is another objection which may be raised against the use of the Dirac operatorx

to describe localization of the electron, namely that each componentẋi , i = 1, 2, 3, of the
associated velocity operator

ẋ = cα (6)

has eigenvalues±c, which seems inappropriate for a massive particle. But, likex, the operator
ẋi does not leaveH(+) invariant. It has no positive-energy eigenstates, so that its eigenvalues
cannot be observed directly. What can be observed is the expectation value of ˙x, and as is well
known, in any positive-energy stateψ ,

〈ẋ〉 = 〈c2p/E(p)〉. (7)

This is appropriate for the propagation of a free, relativistic particle.

2. Electron observables

Consider a self-adjoint operatorA on the Hilbert spaceH of four-spinor functions. LetP (+)

be the self-adjoint projector onto the ‘physical’ subspace of positive-energy vectorsH(+),
satisfying

(P (+))2 = P (+) (8)

and suppose thatA is regular in the sense that:

(a) for eachk = 1, 2 . . . , the operatorP (+)AkP (+) is self-adjoint onH(+), and so represents
an observable for the electron; and

(b) there exists a common, invariant, dense domainD of vectors inH(+) for the set of operators
P (+)AkP (+), k = 1, 2 . . . .

Then if the electron is in a positive-energy stateψ ∈ D, the expectation value

〈P (+)AkP (+)〉 = (P (+)ψ,AkP (+)ψ)
= (ψ,Akψ) = 〈Ak〉 (9)

is observable for everyk. But knowledge of all the expectation values (moments)〈Ak〉 is
sufficient, except in pathological cases [17], to determine the distribution of probability over
the spectrum ofA, consistent with those moments. For example, ifA has a discrete spectrum
of eigenvaluesan, n = 1, 2 . . . corresponding to eigenvectorsϕn ∈ H, then knowledge of all
the moments determines the probabilitypn = |(φn, ψ)|2 associated with each eigenvaluean
of A, such that〈Ak〉 =∑n pn(an)

k, k = 1, 2, . . . .
In this way we see that it is possible in principle, for each of a dense set of positive-energy

states of the electron, to determine by measurements a corresponding distribution of probability
over the spectrum of the (regular) self-adjoint operatorA onH, whether or not this operator
leavesH(+) invariant. In the discrete case, it is appropriate to callpn the probability ‘associated
with the eigenvalue’an ofAwhen the electron is in the stateψ . If A doesleaveH(+) invariant,
we can go further and callpn ‘the probability thatA will be found on measurement to have
the valuean,’ because it is then possible that a measurement will projectψ ontoφn.

Dirac’s coordinate operatorx is regular in the sense described. In this case, we have
to show firstly thatBij...k = P (+)xixj . . . xkP

(+) is self-adjoint, for any number of terms in
the product. This can be seen by working in momentum space, wherexi = ih̄∂/∂pi and
P (+) = (E(p) +H)/2E(p). It is enough to see that the matrix functionP (+)(p) is Hermitian,
and that each element of the matrix is aC(∞)-function, which remains bounded as|p| → ∞.
Then the domain of self-adjointness ofBij...k is P (+)Q ⊂ Q, whereQ ⊂ H is the domain of
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self-adjointness ofxixj . . . xk. Secondly, we have to find a suitable common, invariant, dense
domain for all operators of the formBij...k. This is provided by a space of positive-energy
states, with both possible spin values, of the type described in section 4.

It now follows that it is possible to determine by measurements the distribution of
probability over the spectrum ofx when the electron is in (any one of a dense set of) positive-
energy states, even thoughx does not leaveH(+) invariant. In other words, the probability
density (1) ‘associated withx,’ is in principle observable at any timet , and by an extension of
the argument, as a functionρ(x, t). Relativistic-invariance requires that this density function
can be determined in any inertial frame, and sinceρ is one component of the four-vector field
(ρ, j/c), wherej is defined as in (2) at each instant of time, it follows that the functionj(x, t)

is also observable in principle.
Surprising observable distributions of probability over the spectrum ofx at any one time,

that is to say some surprising observable forms forρ(x), lie at the heart of our solution below
of the localization problem for the free electron. These distributions are arbitrarily sharply
peaked about any chosen point in the spectrum ofx, even thoughx has no positive-energy
eigenstates.

It seems to us unnecessarily restrictive, indeed misleading, to allow the name ‘observables’
only for thoseAwhich leaveH(+) invariant and to remove the others from further consideration,
given that all have observable attributes. This is particularly so in the case ofx, which has
an important role with an intuitive meaning (as the location of charge) when the electron
is coupled to an external electromagnetic field. We prefer to follow Dirac [1] and call all
self-adjoint operators acting onH observables. Then any observable has a (real) spectrum,
and a choice of positive-energy state of the electron determines an observable distribution of
probability over that spectrum. But there is a special subclass of observables, those which do
leaveH(+) invariant. These have the further property that they can be diagonalized on positive-
energy states, and so can be measured in the traditional sense. Accordingly, we suggest that
an observable be called ‘direct’ if it leavesH(+) invariant, and ‘indirect’ otherwise.

The reader is of course free to reject this suggestion as a matter of taste; the main point of
the above argument has not been to introduce the concepts of direct and indirect observables,
though we think that useful, but rather to show that quantities like the probability density (1)
and current density (2), as well as the expectation values〈x〉 and1x, are observable, even
thoughx is not an observable in the traditional sense.

These ideas can obviously be extended to the case when an external field is present, so
long as there is a well-defined subspace of electron states inH. Whether an observable is direct
or indirect may then depend on the field. For example,p is direct for the free electron but
indirect for the electron in a hydrogen atom, whereasx is indirect in both cases. It seems to us
a very interesting mathematical problem to characterize the possibleobservabledistributions
of probability over the spectra of important indirect observables likex in such cases. For
example, can the probability distribution be arbitrarily sharply peaked about any point in the
spectrum ofx for physically allowed states of the electron in a Coulomb field; that is to say,
can the electron be localized arbitrarily sharply in such a field? Can the momentum of the
electron in this case be localized arbitrarily sharply? These seem to us important questions
which should now be tackled.

3. Localizing a nonrelativistic particle

In nonrelativistic quantum mechanics, say for a spinless particle with states described by
complex functionsχ(q), it has become common to associate localizability of the particle with
the existence of a generalized eigenstateδ(3)(q−a) of the position operatorq, for every point
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a in space. This is inadequate, for two reasons.
In the first place, physically realizable states must be normalized, and no sequence

{χn(q)}∞n=1 of normalized states, with increasingly sharp localization ofq abouta, can approach
δ(3)(q − a) asn → ∞. More precisely, no such sequence can equal the generalized state
δ(3)(q − a), in the sense of the definition of generalized functions by sequences [18]. On
the other hand, it is clear that a sequence of normalized states can be constructed such that
the associated sequence ofdensities{χ∗n (q)χn(q)}∞n=1 approaches (more precisely, equals)
δ(3)(q − a), with the integral over all ofq-space of each density in the sequence equal to 1.

In the second place, it is easily seen that it is possible to localize at any chosen time, about
any chosen point, not only the particle’s probability density, but also the associated current
density vector

− ih̄

2m
(χ∗(q)∇χ(q)− χ(q)∇χ∗(q)). (10)

Consider the sequence of normalized states defined by

χn(q) = (n/σ
√
π)3/2e−n

2(q−a)2/(2σ 2)eimv·q/h̄ (11)

for n = 1, 2, . . . , whereσ , a andv are constants. It is easy to check that the associated
sequences of densities and current densities approach (equal)δ(3)(q − a) andvδ(3)(q − a),
respectively. This simultaneous localizability of probability density and current density in
nonrelativistic quantum mechanics is completely obscured if localizability is associated with
the generalized eigenstates ofq. The densities are not defined even as generalized functions
whenχ(q) = δ(3)(q − a).

The importance of this fundamental point is brought home when one considers the
evolution in time under Schrödinger’s equation for a free particle, of a normalized state which
is initially localized arbitrarily precisely, say the state (11) for some large value ofn. We find
that at timet > 0,

χ∗n (q, t)χn(q, t) =
nσ 3

[π(σ 4 + n4h̄2t2/m2)]3/2
e−n

2σ 2(q−vt)2/[σ 4+n4h̄2t2/m2] . (12)

This density is localized nearq = a at t = 0 and spreads out as time passes, with a centre that
moves with constant velocityv.

In fact, another way to describe the localizing sequence of states (11) is to say that as
n→∞, 〈q〉 → a,1q → 0, while 〈p/m〉 → v. In other words, it is possible to localize the
particle arbitrarily precisely while at the same time fixing its average velocity at any chosen
valuev; of course, the uncertainty in the velocity becomes infinitely large asn→∞. Because
the velocityp/m is a constant of the motion, its mean value remains constant in time, and the
centre of the wavepacket moves as shown in (12).

Contrast this with the evolution in time of the generalized eigenstateδ(3)(q − a), which
gives the function

G(q, t) =
( m

2π ih̄t

)3/2
eim(q−a)2/2h̄t t > 0. (13)

At any timet > 0, this is centred onq = a, and is not normalizable. It is clear therefore that
the generalized eigenstateδ(3)(q − a) does not even approximately describe an initial state of
the particle, localized sharply nearq = a, with zero or nonzero average velocity.

We conclude that, no matter how useful they may be for other purposes, generalized
eigenstates of the position operator are not adequate for the description of localized states of
a particle in nonrelativistic quantum mechanics.

An adequate notion of localization in the nonrelativistic case is provided by the introduction
of localizing sequences of states, as follows. Bearing in mind the definition of generalized
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functions by sequences [18], we call a sequence{χn}∞n=1 of normalized states an(a, v)
localizing sequenceif the associated sequences of densities and current densities approach
(equal)δ(3)(q − a) andvδ(3)(q − a), respectively. The sequence defined by (11) provides an
example. A particle can be localized arbitrarily precisely aboutq = a, with its probability
current localized alongv (or equivalently, with its mean velocity equal tov), if there exists an
(a, v) localizing sequence of states. If the particle has nonzero spin, localizing sequences will
also carry suitable spin labels.

Note that the sharpness of localization is determined by the element of the localizing
sequence which represents the state of the particle at the chosen time. Successive elements
of the sequence may be thought of as arising from sharper and sharper localizations of the
particle at that time. (Because the sequence of densities corresponding to a localizing sequence
of states, is equalas a wholeto a delta function [18], it is interesting to ask whether or not it
may be sensible to consider a localizing sequenceas a wholeto represent an idealized, exactly
localized state of the particle; but we shall not pursue this question here.)

4. Localizing the electron

The discussion of the preceeding section shows that, even in nonrelativistic quantum
mechanics, localization of a particle can be described adequately in terms of arbitrarily sharply
localized probability densities and currents, but not in terms of generalized eigenstates. It
follows that, for the localizability of the relativistic electron at any particular instant, the
important issue is not if generalized eigenstates of the Dirac operatorx exist—they do not—but
whether or not sequences{ψn(x)}∞n=1 of positive-energynormalized states can be found, such
that the associated sequences ofobservableprobability densitiesρn(x) and current densities
jn(x), defined as in (1) and (2), equalδ(3)(x− a) andvδ(3)(x− a), respectively.

Remarkably, such(a, v) localizing sequences can be found, for every pointa in x-
space, and every velocity valuev with |v| < c, despite the fact thatx has no positive-
energy generalized eigenstates. Furthermore, such sequences can also be chosen to consist
of eigenstates of a suitable spin operator. Just as in the nonrelativistic case, the sharpness of
localization is determined by which element of a sequence represents the state of the electron
at the chosen time. Asn → ∞, just as in the nonrelativistic case,〈x〉 → a, 1x → 0, and
〈ẋ〉 → v.

As an example, consider the sequence defined by

ψn(x) = 1

(2π)3/2

∫
ϕn(p)e

ix·p d3p

ϕn(p) = 1

n3/2
f
(p
n

)
u(p)e−ia·p.

(14)

Here and for the remainder of this section, for simplicity of presentation we have set ¯h = c = 1.
The functionf (p) is a a complex-valued, ‘good’ function [18], that is, aC∞-function whose
derivatives all vanish faster than any negative power of|p| as|p| → ∞. In addition, we impose∫

|f (p)|2 d3p = 1
∫
|f (p)|2 p|p| d

3p = v. (15)

The spinoru(p) in (14) satisfies

Hu(p) = E(p)u(p) u†(p)u(p) = 1 (16)

and consequently the first of the conditions (15) ensures thatϕn and henceψn is normalized for
everyn. We can further require thatu, and hence eachψn, is an eigenspinor of some suitable
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spin operator with eigenvalue +1
2 or− 1

2, which commutes withp andH , say for definiteness
the third component of Pryce’s spin operator [4]

S̃3(p) = U(p)
(
− i

2
α1α2

)
U†(p)

U(p) = (E(p)I4 +Hβ)/E(p)
(17)

whereE(p) = √2E(p)(E(p) +m), andI4 is the 4× 4 unit matrix.
As the Fourier transform ofψn(x) isϕn(p), so the transform ofψ†

n(x) isϕ†
n(−p), and the

transform ofρn(x) (resp.jni(x), i = 1, 2 or 3) is the convolution

1

(2π)3/2

∫
ϕ†
n(q − p)Qϕn(q) d3q

(
= e−ia·p

(2π)3/2
Rn(p) say

)
(18)

whereQ = I4 (resp.αi). Noting that the transform ofδ(3)(x− a) is e−ia·p/(2π)3/2, we have
to show that{Rn(p)}∞n=1 equals 1 (resp.vi) as a generalized function. From (14) and (18) we
have

Rn(p) = 1

n3

∫ [
f

(
q − p
n

)
u(q − p)

]†

Qf
(q
n

)
u(q) d3q

=
∫
f ∗
(
r − p

n

)
f (r)u†(nr − p)Qu(nr) d3r. (19)

By Taylor’s theorem,

f ∗
(
r − p

n

)
= f ∗(r)− pj

n
f ∗j
(
r − ηp

n

)
u†
a(nr − p) = u†

a(nr)− pku†
ka(nr − θp)

(20)

whereu†
a, a = 1, 2, 3, 4, are the components ofu†, fj (s) = ∂f (s)/∂sj , u†

ka(s) = ∂u†
a(s)/∂sk,

andη, θ are some functions ofr, p andn (anda, in the case ofθ ) satisfying 06 η 6 1,
0 6 θ 6 1. In (20), the summation convention applies to the repeated subscriptsj andk.
Substituting (20) in (19), we get

Rn(p) =
∫
|f (r)|2u†(nr)Qu(nr) d3r − pj

n

∫
f ∗j
(
r − p

n

)
f (r)u†(nr)Qu(nr) d3r

−pk
∫
|f (r)|2u†

k(nr − θp)Qu(nr) d3r

+
pjpk

n

∫
f ∗j
(
r − p

n

)
f (r)u†

k(nr − θp)Qu(nr) d3r

= An − pj
n
Bnj (p)− pkCnk(p) +

pjpk

n
Dnjk(p) say. (21)

Making a standard choice of Dirac matrices [1] withβ diagonal, we get for the eigenspinor
of S̃3(s) with eigenvalue +12,

u†(s) = (E(s) +m, 0, s3, s1− is2)/E(s) (22)

and it is easily checked that

|u†
a(s)| 6 1 |u†

ka(s)| <
2

m

|u†
ka(s)| <

2

|s| (s 6= 0)
(23)

and indeed that the magnitudes of all derivatives ofu†
a, of all orders, are bounded by constants.

It follows succesively [18] thatϕn(p), ψn(x), ρn(x), jn(x) andRn(p) are good functions for
everyn.
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Using the first and second of (23), we see thatBnj (p) andDnjk(p) are bounded by
constants independent ofp andn. In Cnk(p), we note that ifn|r| > 2|p| (> 2θ |p|), then
(n|r| − θ |p|) > 1

2n|r|, and so using the third of (23),

|u†
ka(nr − θp)| <

2

|nr − θp| <
4

n|r| (24)

whenevern|r| > 2|p|. Accordingly, we write

Cnk(p) =
(∫

n|r|<2|p|
+
∫
n|r|>2|p|

)
|f (r)|2u†

k(nr − θp)Qu(nr) d3r

= C<nk(p) +C>nk(p) say. (25)

Then, using (23) and (24),

|C>nk(p)| <
const.

n

∫
n|r|>2|p|

|f (r)|2
|r| d3r

<
const.

n

∫ |f (r)|2
|r| d3r <

const.

n
. (26)

Furthermore, we have from (23) that

|C<nk(p)| < const.
∫
|r|< 2|p|

n

|f (r)|2 d3r

< const.
|p|3
n3
. (27)

Finally, in (21), we see that whenQ = 1 we getAn = 1 because of the first of (15); and
whenQ = αi , we haveu†(nr)αiu(nr) = nri/E(nr), so that

An =
∫
|f (r)|2 ri√

|r|2 + (m2/n2)
d3r (28)

which approachesvi because of the second of (15). From these results forAn, Bnj (p),
Cnk(p) andDnjk(p), it is easy to check that{Rn(p)}∞n=1 is a regular sequence [18] which,
as a generalized function, equals 1 (resp.vi) as required.

Figure 1. The membersρn(r), r = |x|, n = 5, 7, 10, from a sequence of spherically symmetric
probability densities corresponding to a localizing sequence of positive-energy states of the electron,
showing successively sharper localization, well within the Compton wavelength(r = 1).
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The choicef (p) = (1/mc
√
π)3/2 exp(−p2/2m2c2) in (14) leads to a(0, 0)-localizing

sequence of positive-energy states, and a corresponding sequence of spherically symmetric
probability densitiesρn(r), r = |x|/λC . Figure 1 shows these increasingly localized densities
for n = 5, 7, 10, as determined numerically with the help ofMathematica [19]. Localization
well within the Compton wavelength(r = 1) is evident, even for such small values ofn.

5. Space-time transformations, causality and orthogonality

Localizing sequences transform naturally under the action of the (extended) Poincaré group.
This is a consequence of the covariant transformation properties of(ct,x) and(ρ, j/c).

Thus it is easily seen from (14) that a spatial translation byb of (each element of) an
(a, v) localizing sequence produces an(a+b, v) localizing sequence; that the parity operation
produces a(−a,−v) localizing sequence; that the operation of time-reversal produces an
(a,−v) localizing sequence; and that the result of a rotation byR produces an(Ra,Rv)
localizing sequence.

Lorentz boosts and translations in time require a little more discussion. Consider for
example the effect of a boost along the three-axis, withx ′3 = x3 coshσ + ct sinhσ and
ct ′ = ct coshσ + x3 sinhσ . In classical, relativistic physics, if a point-particle with chargee
is, in the original frame, at the pointa, with velocityv, at (on) the instantt = 0, then in the
transformed frame, the particle is at the point(x ′1, x

′
2, x
′
3) = (a1, a2, a3 coshσ), with velocity

v′ = (c/(c coshσ +v3 sinhσ))(v1, v2, v3 coshσ +c sinhσ), on the hyperplanect ′ = x ′3 tanhσ .
It follows that the corresponding charge and current densities are given att = 0 in the first
frame by

j(0,x) = vρ(0,x) = evδ(3)(x− a) (29)

and on the hyperplanect ′ = x ′3 tanhσ in the transformed frame by

j ′((x ′3/c) tanhσ, x ′1, x
′
2, x
′
3) = v′ρ ′((x ′3/c) tanhσ, x ′1, x

′
2, x
′
3)

= (v1, v2, c sinhσ + v3 coshσ) coshσδ(x1− a1)δ(x2 − a2)δ(x3− a3 coshσ).

(30)

This is mirrored in the effect of the boost on an(a, v) localizing sequence at (on) the instant
t = 0. From the transformation laws for a four-vector field, we see that as the associated
sequence of(ρ, j/c) values att = 0 approaches (equals)(1, v/c)δ(3)(x − a), in an obvious
notation, then the sequence of transformed values(ρ ′, j ′1/c, j

′
2/c, j

′
3/c), evaluated on the

hyperplanect ′ = x ′3 tanhσ , approaches (equals)

(c coshσ + v3 sinhσ, v1, v2, c sinhσ + v3 coshσ)

×coshσ

c
δ(x1− a1)δ(x2 − a2)δ(x3− a3 coshσ). (31)

In regard to the evolution of a localizing sequence in time, we note that, as a consequence
of (1) and (2), and the fact that the eigenvalues of eachαi are±1, the Dirac densities satisfy
the inequality|j(x, t) ·n| 6 cρ(x, t), wheren is any constant unit vector. Since the velocity
of probability flow isj(x, t)/ρ(x, t), this inequality is a necessary and sufficient condition for
the spread of the probability densityρ in every direction to occur at speeds no greater than the
speed of light. Thus the localization scheme is also guaranteed to behave causally.

The detailed analysis of how localizing sequences of positive-energy states evolve in time
under Dirac’s equation is an interesting and nontrivial problem to which we hope to return in
future work, together with an analysis of how the spin variable labelling a localizing sequence
transforms under rotations and Lorentz boosts.
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We note finally that localizing sequences of positive-energy states constructed as above
satisfy a limiting notion of orthogonality: if{ψn}∞n=1 is an (a, v) localizing sequence and
{ψ ′n}∞n=1 is an(a′, v′) localizing sequence, then it is easily seen from the second of (14), with
the help of the Riemann–Lebesgue lemma, that

lim
n→∞(ψn, ψ

′
n) = 0 when a 6= a′. (32)

States from two sequences labelled by different spin eigenvalues are of course exactly
orthogonal to each other.

6. Concluding remarks

We have shown that the Dirac electron can be localized arbitrarily sharply about any point in
space, at any chosen instant, when localization is described in terms ofobservableattributes
of Dirac’s operatorx.

This description of arbitrarily precise (but not exact) localization may be compared with
the notion ofexactly localized states introduced by Newton and Wigner [6]. These arise
when one first identifies an appropriate space of physical states for a free, relativistic particle
(more precisely, for an elementary system), and then seeks to find generalized states satisfying
certain conditions which are appropriate when the particle is exactly localized. In the case
of the electron, one obtains as a result the generalized eigenstates of the Pryce–Newton–
Wigner position operator, which leaves the space of physical states invariant. Because this
space carries an irreducible, unitary representationR (say) of the extended Poincaré group, the
operator obtained, and the whole Newton–Wigner concept of localization, have an invariant
group-theoretic meaning. This was emphasized by Bacry [9], who showed that the Pryce–
Newton–Wigner position operator can be expressed in terms of the Poincaré group generators.
In this sense, the Newton–Wigner description of localization is independent of therealization
of the representationR, and there is no particular significance attaching to the realization in
terms of Dirac spinors.

In contrast, out of all manifestly covariant realizations ofR with multicomponent
wavefunctionsψ(x, t), only Dirac’s realization has an associated non-negative probability
densityρ(x, t) and associated current densityj(x, t) satisfying a conservation equation [10].
These densities play a crucial role in our localization scheme, so that Dirac’s realization is
distinguished from all others when the localization problem is considered in the manner which
we have advocated in this paper.

In our view, localization of the free electron can only be described in terms of Dirac’s
equation and its associated dynamical variables. Any other realization ofR is unitarily
equivalent mathematically to that carried by the positive-energy subspaceH(+) ⊂ H, but
is not equivalent to it physically: the point is that the unitary mapping from the one to the other
is nonlocal in every case [20]. It is partly for this reason that investigations of the localization
problem within the abstract framework of an irreducible representation of the Poincaré group
have not led to the solution that we have described.

There is a deeper reason: many investigations of this type have assumed from the outset
that the central problem is to find a self-adjoint operator acting in the space of physical states,
which can be used to define localization on compact regions, or exact localization at a point
in terms of generalized eigenstates. But in the case of the relativistic electron, unlike the case
of a nonrelativistic particle, the physical space of states is a different subspace ofH for each
different external field. The free particle is just one special case of this. It is for this reason
thatall self-adjoint operators onH must be regarded as having physical significance; as we
have shown, any one of them may have observable attributes even in cases when it does not
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leave the subspace of physical states invariant, and so is not an observable in the usual sense.
Our solution of the localization problem depends on this more subtle relationship between
operators and observables which exists for the Dirac electron.

The noncausal properties of Newton–Wigner localization are well known [7, 8, 11]. A
particle localized in the Newton–Wigner sense at the origin at timet = 0, can be found at
t > 0, according to the same notion of localization, outside the sphere of radiusct centred
at the origin. This is unacceptable in a relativistic theory. It is also known that states exactly
localized in the Newton–Wigner sense do not transform in a simple way with respect to Lorentz
boosts—in short, because the Pryce–Newton–Wigner operator is not the three-vector part of a
four-vector.

It is pleasing therefore that we have been able to show that there does exist, at least for the
electron, a causally well-behaved localization scheme, with natural space-time transformation
properties. We have emphasized above that our analysis has depended critically on the
particular structure of Dirac’s equation, and we see no reason to expect that it will extend
to other particles described by other wave equations, excepting those for the two- and four-
component neutrinos.
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